Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Document Type
Year range
1.
Zhongguo Yufang Shouyi Xuebao / Chinese Journal of Preventive Veterinary Medicine ; 44(11):1135-1141, 2023.
Article in Chinese | CAB Abstracts | ID: covidwho-20238997

ABSTRACT

Previous studies have revealed that developmental regulated brain protein (Drebrin) is involved in cell- to-cell communication, nerve transmission, tumor metastasis, spermatogenesis and other life activities, but there are few studies on viruses. The aim of the current research was therefore, to study the function of Drebrin and its effect on the proliferation of porcine epidemic diarrhea virus (PEDV). The Drebrin gene was cloned according to the Drebrin gene sequence (XM_008015438.2) of Chlorocebus sabaeus registered by GenBank, and the phylogenetic tree was constructed to analyze its homology. The results showed that the CDS region of Vero cells Drebrin gene was 2088 bp long, encoding 695 amino acids, and was relatively conserved and had high homology with all species. To investigate the effect of Drebrin on the proliferation of PEDV in Vero cells, the eukaryotic expression vector pcDNA3.1-Drebrin-Flag was constructed. After transfection of Vero cells with different concentrations of pcDNA3.1-Drebrin-Flag, cells were infected with PEDV. Our results showed that overexpression of Drebrin in Vero cells could significantly inhibit the intracellular PEDV mRNA level and N protein expression, reduce the extracellular virus titer and inhibit the proliferation of PEDV. Further study on the interaction between Drebrin and PEDV S proteins by laser confocal technique was also performed. The results showed that Drebrin and S protein were co-located in the cytoplasm, suggesting that the two proteins may interact with each other. This study demonstrated for the first time that Drebrin can inhibit PEDV proliferation in Vero cells, laying a foundation for further research in to Drebrin function and provides a valuable information for anti-PEDV research.

2.
PLoS Biol ; 21(3): e3002039, 2023 03.
Article in English | MEDLINE | ID: covidwho-2289032

ABSTRACT

Coronaviruses (CoVs) comprise a group of important human and animal pathogens. Despite extensive research in the past 3 years, the host innate immune defense mechanisms against CoVs remain incompletely understood, limiting the development of effective antivirals and non-antibody-based therapeutics. Here, we performed an integrated transcriptomic analysis of porcine jejunal epithelial cells infected with porcine epidemic diarrhea virus (PEDV) and identified cytidine/uridine monophosphate kinase 2 (CMPK2) as a potential host restriction factor. CMPK2 exhibited modest antiviral activity against PEDV infection in multiple cell types. CMPK2 transcription was regulated by interferon-dependent and interferon regulatory factor 1 (IRF1)-dependent pathways post-PEDV infection. We demonstrated that 3'-deoxy-3',4'-didehydro-cytidine triphosphate (ddhCTP) catalysis by Viperin, another interferon-stimulated protein, was essential for CMPK2's antiviral activity. Both the classical catalytic domain and the newly identified antiviral key domain of CMPK2 played crucial roles in this process. Together, CMPK2, viperin, and ddhCTP suppressed the replication of several other CoVs of different genera through inhibition of the RNA-dependent RNA polymerase activities. Our results revealed a previously unknown function of CMPK2 as a restriction factor for CoVs, implying that CMPK2 might be an alternative target of interfering with the viral polymerase activity.


Subject(s)
Coronavirus Infections , Coronavirus , Porcine epidemic diarrhea virus , Humans , Animals , Swine , Interferons , Antiviral Agents/pharmacology , Proteins/genetics , Porcine epidemic diarrhea virus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL